Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Heliyon ; 8(12): e12327, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2149782

ABSTRACT

In the present study, we have done a comparative study on the efficacy of some currently used repurposed drugs: Oseltamivir (O), Favipiravir (F) and Hydroxychloroquine (H) in individual and in their combinational mode against CoV-2 infections. The ADME analysis has helped us to identify the inhibitory possibility of the tested drugs towards receptor 3CLpro protein of SARS-CoV-2. Various thermodynamical parameters obtained from Molecular Docking, Molecular dynamics (MD) and MMPBSA simulations like binding affinity, potential energy (Epot), RMSD, RMSF, SASA energy, interaction energies, Gibbs free energy (ΔGbind) etc. also helped us to verify the effectivity of mentioned drugs against CoV-2 protease.

2.
Chem Zvesti ; 76(5): 2759-2776, 2022.
Article in English | MEDLINE | ID: covidwho-1634397

ABSTRACT

Abstract: The unavailability of a proper drug against SARS-CoV-2 infections and the emergence of various variants created a global crisis. In the present work, we have studied the antiviral behavior of feverfew plant in treating COVID-19. We have reported a systematic in silico study with the antiviral effects of various phytoconstituents Borneol (C10H18O), Camphene (C10H16), Camphor (C10H16O), Alpha-thujene (C10H16), Eugenol (C10H14O), Carvacrol (C10H14O) and Parthenolide (C15H20O3) of feverfew on the viral protein of SARS-CoV-2. Parthenolide shows the best binding affinity with both main protease (Mpro) and papain-like protease (PLpro). The molecular electrostatic potential and Mulliken atomic charges of the Parthenolide molecule shows the high chemical reactivity of the molecule. The docking of Parthenolide with PLpro give score of -8.0 kcal/mol that validates the good binding of Parthenolide molecule with PLpro. This complex was further considered for molecular dynamics simulations. The binding energy of the complex seems to range in between -3.85 to -11.07 kcal/mol that is high enough to validate the stability of the complex. Free energy decomposition analysis have been also performed to understand the contribution of residues that reside into the binding site. Good binding affinity and reactivity response suggested that Parthenolide can be used as a promising drug against the COVID-19. Supplementary Information: The online version contains supplementary material available at 10.1007/s11696-022-02067-6.

3.
J Mol Struct ; 1246: 131253, 2021 Dec 15.
Article in English | MEDLINE | ID: covidwho-1545283

ABSTRACT

As per date, around 20 million COVID-19 cases reported from across the globe due to a tiny 125 nm sized virus: SARS-CoV-2 which has created a pandemic and left an unforgettable impact on our world. Besides vaccine, medical community is in a race to identify an effective drug, which can fight against this disease effectively. Favipiravir (F) has recently attracted too much attention as an effective repurposed drug against COVID-19. In the present study, the pertinency of F has been tested as an antiviral option against viral protease (3CLpro) of SARS-CoV-2 with the help of density functional theory (DFT) and MD Simulation. Different electronic properties of F such as atomic charges, molecular electrostatic properties (MEP), chemical reactivity and absorption analysis have been studied by DFT. In order to understand the interaction and stability of inhibitor F against viral protease, molecular docking and MD simulation have been performed. Various output like interaction energies, number of intermolecular hydrogen bonding, binding energy etc. have established the elucidate role of F for the management of CoV-2 virus for which there is no approved therapies till now. Our findings highlighted the need to further evaluate F as a potential antiviral against SARS-CoV-2.

4.
Chem Phys Lett ; 761: 138057, 2020 Dec 16.
Article in English | MEDLINE | ID: covidwho-813538

ABSTRACT

Prenatal COVID infection is one of the worst affected and least attended aspects of the COVID-19 disease. Like other coronaviruses, CoV2 infection is anticipated to affect fetal development by maternal inflammatory response on the fetus and placenta. Studies showed that higher prenatal choline level in mother's body can safeguard the developing brain of the fetus from the adverse effects of CoV2 infection. Choline is commonly used as food supplement. By virtual screening, molecular docking and molecular dynamics techniques, we have established a strong inhibitory possibility of choline for SARS 3CLpro protease which may provide a lead for prenatal COVID-19 treatment.

5.
J Biomol Struct Dyn ; 39(17): 6792-6809, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-695459

ABSTRACT

The recent appearance of COVID-19 virus has created a global crisis due to unavailability of any vaccine or drug that can effectively and deterministically work against it. Naturally, different possibilities (including herbal medicines having known therapeutic significance) have been explored by the scientists. The systematic scientific study (beginning with in silico study) of herbal medicines in particular and any drug in general is now possible as the structural components (proteins) of COVID-19 are already characterized. The main protease of COVID-19 virus is Mpro or 3CLpro which is a key CoV enzyme and an attractive drug target as it plays a pivotal role in mediating viral replication and transcription. In the present study, 3CLpro is used to study drug:3CLpro interactions and thus to investigate whether all or any of the main chemical constituents of Tinospora cordifolia (e.g. berberine (C20H18NO4), ß-sitosterol (C29H50O), coline (C5H14NO), tetrahydropalmatine (C21H25NO4) and octacosanol (C28H58O)) can be used as an anti-viral drug against SARS-CoV-2. The in silico study performed using tools of network pharmacology, molecular docking including molecular dynamics have revealed that among all considered phytochemicals in Tinospora cordifolia, berberine can regulate 3CLpro protein's function due to its easy inhibition and thus can control viral replication. The selection of Tinospora cordifolia was motivated by the fact that the main constituents of it are known to be responsible for various antiviral activities and the treatment of jaundice, rheumatism, diabetes, etc.Communicated by Ramaswamy H. Sarma.


Subject(s)
COVID-19 , Plants, Medicinal , Tinospora , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL